Our Terms & Conditions | Our Privacy Policy
India–Eurasia convergence speed-up by passive-margin sediment subduction
Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).
Google Scholar
Cande, S. C. & Patriat, P. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic. Geophys. J. Int. 200, 227–243 (2015).
Google Scholar
Copley, A., Avouac, J. P. & Royer, J. Y. India‐Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J. Geophys. Res. Solid Earth 115, B03410 (2010).
Google Scholar
Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011).
Google Scholar
Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).
Google Scholar
Van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. Solid Earth 116, B06101 (2011).
Google Scholar
Pusok, A. E. & Stegman, D. R. The convergence history of India-Eurasia records multiple subduction dynamics processes. Sci. Adv. 6, eaaz8681 (2020).
Google Scholar
Wan, B. et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Sci. China-Earth Sci. 62, 2005–2016 (2019).
Google Scholar
Forsyth, D. & Uyeda, S. On the relative importance of the driving forces of plate motion. Geophys. J. Int. 43, 163–200 (1975).
Google Scholar
Holt, A. F., Royden, L. H. & Becker, T. W. The dynamics of double slab subduction. Geophys. J. Int. 209, 250–265 (2017).
Google Scholar
Pusok, A. E. & Stegman, D. R. Formation and stability of same-dip double subduction systems. J. Geophys. Res. Solid Earth 124, 7387–7412 (2019).
Google Scholar
Cande, S. C., Patriat, P. & Dyment, J. Motion between the Indian, Antarctic and African plates in the early Cenozoic: Indian Ocean Plate motions. Geophys. J. Int. 183, 127–149 (2010).
Google Scholar
Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).
Google Scholar
Van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).
Google Scholar
DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824–849 (2014).
Google Scholar
Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Nat. Sci. Rev. 8, nwaa173 (2020).
Google Scholar
Behr, W. M. & Becker, T. W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 502, 166–173 (2018).
Google Scholar
Hu, J., Liu, L. & Gurnis, M. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nat. Commun. 12, 7271 (2021).
Google Scholar
Sobolev, S. V. & Brown, M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 570, 52–57 (2019).
Google Scholar
Sobolev, S. V. & Babeyko, A. Y. What drives orogeny in the Andes? Geology 33, 617–620 (2005).
Google Scholar
Tobin, H. J. & Saffer, D. M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37, 679–682 (2009).
Google Scholar
Kopf, A. & Brown, K. M. Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Mar. Geol. 202, 193–210 (2003).
Google Scholar
Bangs, N. L. B. et al. Broad, weak regions of the Nankai Megathrust and implications for shallow coseismic slip. Earth Planet. Sci. Lett. 284, 44–49 (2009).
Google Scholar
Brizzi, S. et al. The role of sediment accretion and buoyancy on subduction dynamics and geometry. Geophys. Res. Lett. 48, e2021GL096266 (2021).
Google Scholar
Zhu, D. C. et al. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt–peridotite interaction? J. Asian Earth Sci. 34, 298–309 (2009).
Google Scholar
Mo, X. X. et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225–242 (2007).
Google Scholar
Zhu, D. C., Wang, Q., Chung, S. L., Cawood, P. A. & Zhao, Z. D. Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geol. Soc. Spec. Publ. 483, 583–604 (2019).
Google Scholar
Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic ARC magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).
Google Scholar
Schmidt, M. W. & Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 18, 2817–2854 (2017).
Google Scholar
Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64–89 (2018).
Google Scholar
Chen, L., Zheng, Y. F., Zhao, Z. F., An, W. & Hu, X. M. Continental crust recycling in ancient oceanic subduction zone: geochemical insights from arc basaltic to andesitic rocks and paleo-trench sediments in southern Tibet. Lithos 414–415, 106619 (2022).
Zhao, L., Guo, F., Fan, W. M. & Huang, M. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: constraints on the architecture of paleo-Pacific subduction zone. J. Geophys. Res. Solid Earth 124, 2525–2550 (2019).
Google Scholar
Guo, F. et al. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: an overview. Earth Sci. Rev. 212, 103448 (2021).
Google Scholar
Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. & Hofmann, A. W. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet. Sci. Lett. 69, 365–378 (1984).
Google Scholar
Hou, Z. et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ. Geol. 110, 1541–1575 (2015).
Google Scholar
Wen, D. R. et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105, 1–11 (2008).
Google Scholar
Huang, T. Y. et al. Subduction erosion revealed by Late Mesozoic magmatism in the Gangdese arc, South Tibet. Geophys. Res. Lett. 49, e2021GL097360 (2022).
Google Scholar
Ding, L. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 3, 652–667 (2022).
Google Scholar
van Dinther, Y. et al. The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models. J. Geophys. Res. Solid Earth 118, 6183–6202 (2013).
Google Scholar
Dal Zilio, L., Kissling, E., Gerya, T. & van Dinther, Y. Slab rollback orogeny model: a test of concept. Geophys. Res. Lett. 47, e2020GL089917 (2020).
Google Scholar
Gerya, T. V. & Yuen, D. A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007).
Google Scholar
Gerya, T. & Stöckhert, B. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int. J. Earth Sci. (Geol Rundsch) 95, 250–274 (2006).
Google Scholar
Heezen, B. C., Ericson, D. B. & Ewing, M. Further evidence for a turbidity current following the 1929 Grand Banks earthquake. Deep Sea Res. (1953) 1, 193–202 (1954).
Google Scholar
Straume, E. O. et al. GlobSed: updated total sediment thickness in the world’s oceans. Geochem. Geophys. Geosyst. 20, 1756–1772 (2019).
Google Scholar
Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chen. Geol. 145, 325–394 (1998).
Google Scholar
Pusok, A. E., Stegman, D. R. & Kerr, M. The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins. Solid Earth 13, 1455–1473 (2022).
Google Scholar
Sibson, R. H. Stress switching in subduction forearcs: implications for overpressure containment and strength cycling on megathrusts. Tectonophysics 600, 142–152 (2013).
Google Scholar
Faulkner, D. R. et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575 (2010).
Google Scholar
Tang, M., Ji, W. Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2020).
Google Scholar
Hu, F. et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole‐rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202 (2020).
Guo, P. & Yang, T. Quantifying continental crust thickness using the machine learning method. J. Geophys. Res. Solid Earth 128, e2022JB025970 (2023).
Google Scholar
Zhao, Z. D. et al. Distribution and its significance of dikes in southern Tibetan Plateau. Acta Petrol. Sin. 37, 3399–3412 (2021).
Google Scholar
van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).
Google Scholar
Hu, X. M., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859–862 (2015).
Google Scholar
Orme, D. A., Carrapa, B. & Kapp, P. Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet. Basin Res. 27, 387–411 (2015).
Google Scholar
An, W., Hu, X. M., Garzanti, E., Wang, J. G. & Liu, Q. New precise dating of the India‐Asia collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 48, e2020GL090641 (2021).
Google Scholar
Zhu, D. C. et al. Interplay between oceanic subduction and continental collision in building continental crust. Nat. Commun. 13, 7141 (2022).
Google Scholar
Kapp, P. & DeCelles, P. G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).
Google Scholar
Ma, L. et al. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos 172–173, 17–30 (2013).
Google Scholar
Ma, L. et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro. Chem. Geol. 349–350, 54–70 (2013).
Google Scholar
Meng, Y. K. et al. Late Mesozoic diorites of the middle Gangdese magmatic belt of southern Tibet: new insights from SHRIMP U-Pb dating and Sr-Nd-Hf-O isotopes. Lithos 404–405, 106420 (2021).
Google Scholar
Guan, Q. et al. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications. Acta Petrol. Sin. 27, 2083–2094 (2011).
Google Scholar
Tang, Y. et al. Geochemistry and petrogenesis of Late Cretaceous Namling gabbro and dykes in Gangdese batholith, Tibet. Acta Petrol. Sin. 35, 387–404 (2019).
Google Scholar
Qi, Y. et al. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos 302–303, 178–188 (2018).
Google Scholar
Huang, F. et al. Fluid flux in the lithosphere beneath southern Tibet during Neo-Tethyan slab breakoff: evidence from an appinite–granite suite. Lithos 344–345, 324–338 (2019).
Google Scholar
Wang, Y. F. et al. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos 324–325, 877–892 (2019).
Google Scholar
Huang, F., Rooney, T. O., Xu, J. F. & Zeng, Y. C. Magmatic record of continuous Neo-Tethyan subduction after initial India-Asia collision in the central part of southern Tibet. GSA Bull. 133, 1600–1612 (2020).
Lei, M., Chen, J. L., Huang, F. & Liu, Y. X. Mantle wedge enrichment beneath southern Tibet during the late stage (100–45 Ma) of oceanic subduction: geochemical constraints from mantle-derived intrusions. Lithos 406–407, 106505 (2021).
Google Scholar
Yan, H. Y. et al. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet. J. Geophys. Res. Solid Earth 124, 456–475 (2019).
Google Scholar
Mo, X. X. et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250, 49–67 (2008).
Google Scholar
Zhou, S. et al. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications. Chin. Sci. Bull. 49, 1970–1979 (2004).
Google Scholar
Dong, G. C. Linzizong Volcanic Rocks and Implications for Probing India Eurasia Collision Process in Linzhou Volcanic Basin, Tibet. PhD thesis, China Univ. Geosciences, Beijing (2002).
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Google Scholar
Richards, A. et al. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet. Sci. Lett. 236, 773–796 (2005).
Google Scholar
Aizawa, Y., Tatsumi, Y. & Yamada, H. Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc 8, 38–46 (1999).
Google Scholar
Tatsumi, Y. & Hanyu, T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of high‐Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem. Geophys. Geosyst. 4, 1081 (2003).
Google Scholar
Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrology 49, 717–740 (2008).
Google Scholar
Wilson, M. Igneous Petrogenesis. (Springer, 1989).
Faure, G. & Mensing, T. M. Isotopes: Principles and Applications (Wiley, 2005).
Crameri, F. et al. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method: modelling topography in geodynamics. Geophys. J. Int. 189, 38–54 (2012).
Google Scholar
Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).
Ranalli, G. Rheology of the Earth (Springer-Verlag, 2011).
Cai, F. L. et al. Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet. Earth Planet. Sci. Lett. 435, 105–114 (2016).
Google Scholar
Hennig, J., Hall, R. & Armstrong, R. A. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Res. 32, 41–63 (2016).
Google Scholar
Wang, J. G. et al. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): the terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Res. 34, 84–98 (2016).
Google Scholar
Mitchell, N. C. Modeling Cenozoic sedimentation in the central equatorial Pacific and implications for true polar wander. J. Geophys. Res. Solid Earth 103, 17749–17766 (1998).
Google Scholar
Savoye, B., Babonneau, N., Dennielou, B. & Bez, M. Geological overview of the Angola–Congo margin, the Congo deep-sea fan and its submarine valleys. Deep Sea Res. PT II 56, 2169–2182 (2009).
Google Scholar
Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 2003RG000127 (2004).
Google Scholar
Hu, X. M., An, W., Garzanti, E. & Liu, Q. Recognition of trench basins in collisional orogens: insights from the Yarlung Zangbo suture zone in southern Tibet. Sci. China Earth Sci. 63, 2017–2028 (2020).
Google Scholar
Noda, A. Forearc basins: types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895 (2016).
Google Scholar
Straub, S. M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat. Rev. Earth Environ. 1, 574–589 (2020).
Google Scholar
Zhou, H. et al. Data from: India-Eurasia convergence speed-up by passive-margin sediment subduction. Dryad (2024).
Irvine, T. N. & Baragar, W. R. A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523–548 (1971).
Google Scholar
Peccerillo, A. & Taylor, S. R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63–81 (1976).
Google Scholar
Hasterok, D. et al. New maps of global geological provinces and tectonic plates. Earth Sci. Rev. 231, 104069 (2022).
Google Scholar
Den Hartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on megathrust slip stability under subduction zone P–T conditions. Earth Planet. Sci. Lett. 353–354, 240–252 (2012).
Google Scholar
Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).
Google Scholar
Tsutsumi, A. & Shimamoto, T. High‐velocity frictional properties of gabbro. Geophy. Res. Lett. 24, 699–702 (1997).
Google Scholar
Chester, F. M. & Higgs, N. G. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res. Solid Earth 97, 1859–1870 (1992).
Google Scholar
Del Gaudio, P. et al. Frictional melting of peridotite and seismic slip. J. Geophys. Res. Solid Earth 114, B06306 (2009).
Google Scholar
Schultz, R. A. Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech. Rock Eng. 28, 1–15 (1995).
Google Scholar
Images are for reference only.Images and contents gathered automatic from google or 3rd party sources.All rights on the images and contents are with their legal original owners.
Comments are closed.