Our Terms & Conditions | Our Privacy Policy
Past warm intervals inform the future South Asian summer monsoon
Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
Google Scholar
Fan, F., Mann, M. E., Lee, S. & Evans, J. L. Future changes in the South Asian summer monsoon: an analysis of the CMIP3 multimodel projections. J. Clim. 25, 3909–3928 (2012).
Google Scholar
Li, Z., Sun, Y., Li, T., Chen, W. & Ding, Y. Projections of south Asian summer monsoon under global warming from 1.5° to 5 °C. J. Clim. 34, 7913–7926 (2021).
Google Scholar
Chen, K., Axelsson, J., Zhang, Q., Li, J. & Wang, L. EC-Earth simulations reveal enhanced inter-hemispheric thermal contrast during the last interglacial further intensified the Indian Monsoon. Geophys. Res. Lett. 49, e2021GL094551 (2022).
Google Scholar
Wang, Y., He, C., Li, T., Zhang, C. & Gu, X. Distinctive changes of Asian–African summer monsoon in interglacial epochs and global warming scenario. Clim. Dyn. 62, 2129–2145 (2023).
Google Scholar
Han, Z. & Li, G. The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period. Clim. Dyn. 62, 5845–5862 (2024).
Google Scholar
Wang, B. & LinHo Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15, 386–398 (2002).
Google Scholar
Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).
Google Scholar
Wu, G. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 404 (2012).
Google Scholar
Chen, X. & Zhou, T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett. 42, 9433–9439 (2015).
Google Scholar
Li, G., Xie, S. P., He, C. & Chen, Z. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change 7, 708–712 (2017).
Google Scholar
Huang, X. et al. South Asian summer monsoon projections constrained by the Interdecadal Pacific Oscillation. Sci. Adv. 6, eaay6546 (2020).
Google Scholar
Rajesh, P. V. & Goswami, B. N. A new emergent constraint corrected projections of Indian summer monsoon rainfall. Geophys. Res. Lett. 49, e2021GL096671 (2022).
Google Scholar
Chen, Z., Zhou, T. & Chen, X. Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun. 13, 2552 (2022).
Google Scholar
Chen, Y. J., Hwang, Y. T. & Lu, J. Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean. npj Clim. Atmos. Sci. 7, 318 (2024).
Cheng, Y., Wang, L., Chen, X., Zhou, T. & Turner, A. A shorter duration of the Indian summer monsoon in constrained projections. Geophys. Res. Lett. 52, e2024GL112848 (2025).
Google Scholar
Biasutti, M. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 11, 392–400 (2018).
Google Scholar
Tierney, J. E. et al. Past climates inform our future. Science 370, 680 (2020).
Google Scholar
Clemens, S. C. et al. Remote and local drivers of pleistocene South Asian summer monsoon precipitation: a test for future predictions. Sci. Adv. 7, eabg3848 (2021).
Google Scholar
Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).
Google Scholar
Wang, Y. V. et al. Higher sea surface temperature in the Indian Ocean during the Last Interglacial weakened the South Asian monsoon. Proc. Natl Acad. Sci. USA 119, e2107720119 (2022).
Google Scholar
He, J., Sun, W., Wang, B. & Liu, J. Opposing changes in Indian summer monsoon rainfall variability produced by orbital and anthropogenic forcing. Geophys. Res. Lett. 51, e2024GL109897 (2024).
Google Scholar
Dahiya, K., Chilukoti, N. & Attada, R. Evaluating the climatic state of Indian summer monsoon during the mid-Pliocene period using CMIP6 model simulations. Dyn. Atmos. Ocean. 106, 101455 (2024).
Google Scholar
Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).
Google Scholar
Kaufman, D. S. & Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023).
Google Scholar
Haywood, A. M. et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Clim. Past 12, 663–675 (2016).
Google Scholar
Otto-Bliesner, B. L. et al. The PMIP4 contribution to CMIP6—Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 10, 3979–4003 (2017).
Google Scholar
Kageyama, M. et al. The PMIP4 contribution to CMIP6—Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).
Google Scholar
Li, X., Jiang, D., Tian, Z. & Yang, Y. Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 56–70 (2018).
Google Scholar
D’Agostino, R., Bader, J., Bordoni, S., Ferreira, D. & Jungclaus, J. Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett. 46, 1591–1601 (2019).
Google Scholar
Scussolini, P. et al. Agreement between reconstructed and modeled boreal precipitation of the last interglacial. Sci. Adv. 5, eaax7047 (2019).
Google Scholar
Wang, Y., Liu, X. & Herzschuh, U. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci. Rev. 103, 135–153 (2010).
Google Scholar
Meehl, G. A. & Arblaster, J. M. Mechanisms for projected future changes in South Asian monsoon precipitation. Clim. Dyn. 21, 659–675 (2003).
Google Scholar
Sabade, S. S., Kulkarni, A. & Kripalani, R. H. Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor. Appl. Climatol. 103, 543–565 (2011).
Google Scholar
Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 4, 287–300 (2013).
Google Scholar
Ma, J. & Yu, J.-Y. Paradox in South Asian summermonsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys. Res. Lett. 41, 2934–2940 (2014).
Google Scholar
Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. 28, 4107–4125 (2015).
Google Scholar
Li, R., Lv, S., Han, B., Gao, Y. & Meng, X. Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models. Int. J. Climatol. 37, 94–108 (2017).
Google Scholar
Sun, Y., Ding, Y. & Dai, A. Changing links between South Asian summer monsoon circulation and tropospheric land–sea thermal contrasts under a warming scenario. Geophys. Res. Lett. 37, L02704 (2010).
Sooraj, K. P., Terray, P. & Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim. Dyn. 45, 233–252 (2015).
Google Scholar
Wu, Q. Y. et al. Asian summer monsoon responses to the change of land–sea thermodynamic contrast in a warming climate: CMIP6 projections. Adv. Clim. Change Res. 13, 205–217 (2022).
Google Scholar
Li, T. et al. Distinctive South and East Asian monsoon circulation responses to global warming. Sci. Bull. 67, 762–770 (2022).
Google Scholar
Luo, H., Wang, Z., He, C., Chen, D. & Yang, S. Future changes in South Asian summer monsoon circulation under global warming: role of the Tibetan Plateau heating. npj Clim. Atmos. Sci. 7, 103 (2024).
Google Scholar
Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).
Google Scholar
Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).
Google Scholar
Jin, Q. & Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nat. Clim. Change 7, 587–594 (2017).
Google Scholar
Li, B. et al. Middle east warming in spring enhances summer rainfall over Pakistan. Nat. Commun. 14, 7635 (2023).
Google Scholar
Anoop, A., Prasad, S., Krishnan, R., Naumann, R. & Dulski, P. Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat. Int. 313–314, 74–84 (2013).
Google Scholar
Dortch, J. M. et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 28, 1037–1054 (2009).
Google Scholar
Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos 80, 69–70 (1999).
Google Scholar
deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).
Google Scholar
Chang, Z., Xiao, J., Lü, L. & Yao, H. Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China. J. Asian Earth Sci. 37, 166–175 (2010).
Google Scholar
Yao, Y.-F. et al. Monsoon versus uplift in Southwestern China–Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE 7, e37760 (2012).
Google Scholar
Xie, S. et al. Palaeoclimatic estimates for the Late Pliocene based on leaf physiognomy from Western Yunnan, China. Turkish J. Earth Sci. 21, 251–261 (2012).
Gaur, R. & Chopra, S. R. K. Taphonomy, fauna, environment and ecology of Upper Sivaliks (Plio-Pleistocene) near Chandigarh, India. Nature 308, 353–355 (1984).
Google Scholar
Sanyal, P., Bhattacharya, S. K., Kumar, R., Ghosh, S. K. & Sangode, S. J. Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 23–41 (2004).
Google Scholar
Burns, S. J., Fleitmann, D., Matter, A., Neff, U. & Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, 623–626 (2001).
Google Scholar
Cai, Y. et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl Acad. Sci. USA 112, 2954–2959 (2015).
Google Scholar
Magiera, M. et al. Local and regional Indian summer monsoon precipitation dynamics during Termination II and the Last Interglacial. Geophys. Res. Lett. 46, 12454–12463 (2019).
Google Scholar
An, Z. et al. Glacial–interglacial Indian summer monsoon dynamics. Science 333, 719–723 (2011).
Google Scholar
Jiang, N., Yan, Q. & Wang, H. General characteristics of climate change over China and associated dynamic mechanisms during the Last Interglacial based on PMIP4 simulations. Glob. Planet. Change 208, 103700 (2022).
Google Scholar
Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 4–10 (2016).
Google Scholar
Cai, Y. et al. Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5. Geology 38, 243–246 (2010).
Google Scholar
Hodell, D. A. et al. Paleoclimate of Southwestern China for the past 50,000 yr inferred from lake sediment records. Quat. Res. 52, 369–380 (1999).
Google Scholar
Trivedi, A. in Holocene Climate Change and Environment (eds Kumaran, N. & Damodara, P.) 611–628 (Elsevier, 2022).
Dixit, S. & Bera, S. K. Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India. J. Earth Syst. Sci. 121, 135–147 (2012).
Google Scholar
Dixit, S. & Bera, S. K. Pollen-inferred vegetation vis-á-vis climate dynamics since Late Quaternary from western Assam, Northeast India: signal of global climatic events. Quat. Int. 286, 56–68 (2013).
Google Scholar
Ghosh, R. et al. Late Quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. Quat. Int. 325, 13–29 (2014).
Google Scholar
Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).
Google Scholar
Enzel, Y. et al. High-resolution holocene environmental changes in the Thar Desert, northwestern India. Science 284, 125–128 (1999).
Google Scholar
Zhu, L. et al. A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J. Paleolimnol. 42, 343–358 (2009).
Google Scholar
Zhu, L. et al. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18, 831–839 (2008).
Google Scholar
Phadtare, N. R. Sharp DEcrease in Summer Monsoon Strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat. Res. 53, 122–129 (2000).
Google Scholar
Morinaga, H. et al. Oxygen-18 and carbon-13 records for the last 14,000 years from lacustrine carbonates of Siling-Co (Lake) in the Qinghai-Tibetan Plateau. Geophys. Res. Lett. 20, 2909–2912 (1993).
Google Scholar
Demske, D., Tarasov, P. E., Wünnemann, B. & Riedel, F. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 172–185 (2009).
Google Scholar
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, 1–35 (2020).
Google Scholar
Feng, R., Otto-Bliesner, B. L., Brady, E. C. & Rosenbloom, N. Increased climate response and earth system sensitivity from CCSM4 to CESM2 in Mid-Pliocene simulations. J. Adv. Model. Earth Syst. 12, e2019MS002033 (2020).
Google Scholar
Otto-Bliesner, B. L. et al. A comparison of the CMIP6 midHolocene and lig127k simulations in CESM2. Paleoceanogr. Paleoclimatol. 35, e2020PA003957 (2020).
Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
Google Scholar
Zhang, Q. et al. Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR. Geosci. Model Dev. 14, 1147–1169 (2021).
Google Scholar
Nazarenko, L. S. et al. Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst. 14, 1–25 (2022).
Google Scholar
Kelley, M. et al. GISS‐E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).
Google Scholar
Hewitt, H. T. et al. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253 (2011).
Google Scholar
Williams, C. J. R. et al. Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model-model and model–data comparison. Clim. Past 17, 2139–2163 (2021).
Google Scholar
Williams, C. et al. The UK contribution to CMIP6/PMIP4: mid-Holocene and Last Interglacial experiments with HadGEM3, and comparison to the pre-industrial era and proxy data. Clim. Past 16, 1429–1450 (2020).
Google Scholar
Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, 1–52 (2020).
Google Scholar
Guo, C. et al. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 12, 343–362 (2019).
Google Scholar
Li, X., Guo, C., Zhang, Z., Helge Otterä, O. & Zhang, R. PlioMIP2 simulations with NorESM-L and NorESM1-F. Clim. Past 16, 183–197 (2020).
Google Scholar
Bartlein, P. J. & Shafer, S. L. Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis. Geosci. Model Dev. 12, 3889–3913 (2019).
Google Scholar
He, L., Zhou, T. & Chen, X. South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements. Clim. Dyn. 61, 1049–1061 (2022).
Google Scholar
Zhang, T., Jiang, X., Yang, S., Chen, J. & Li, Z. A predictable prospect of the South Asian summer monsoon. Nat. Commun. 13, 7080 (2022).
Google Scholar
Seager, R. & Henderson, N. Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Clim. 26, 7876–7901 (2013).
Google Scholar
Chou, C., Chen, C. A., Tan, P. H. & Chen, K. T. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 25, 3291–3306 (2012).
Google Scholar
Huang, P., Xie, S., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).
Google Scholar
Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015).
Google Scholar
Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weather Rev. 115, 3–12 (1987).
Google Scholar
Wu, B., Zhou, T. & Li, T. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Clim. 30, 9621–9635 (2017).
Google Scholar
Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).
Google Scholar
Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).
Google Scholar
Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011).
Google Scholar
Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, 1–5 (2008).
Google Scholar
Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nat. Commun. 8, 778 (2017).
Google Scholar
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
He, J., Soden, B. J. & Kirtman, B. The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett. 41, 2614–2622 (2014).
Google Scholar
He, J. & Soden, B. J. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change. J. Clim. 28, 8728–8742 (2015).
Google Scholar
Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).
Google Scholar
Li, X. & Ting, M. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change. Clim. Dyn. 49, 2863–2880 (2017).
Google Scholar
Watanabe, M. & Kimoto, M. Atmosphere–ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126, 3343–3369 (2000).
Google Scholar
He, L., Zhou, T. & Guo, Z. Data and code for “Past warm intervals inform the future South Asian summer monsoon”. Zenodo (2025).
Images are for reference only.Images and contents gathered automatic from google or 3rd party sources.All rights on the images and contents are with their legal original owners.
Comments are closed.